C4: Ecological responses at European scale: progress and highlights

Wim de Vries

Alessandro Cescatti, Gert Jan Reinds, Max Posch, Mark Theobald

Soenke Zaehle, Lena Mercado, Dave Simpson, Ed Rowe

Main tasks Component 4

- Further develop and apply verified (in WP13) dynamic global vegetation models (DGVMs) and dynamic soil vegetation growth models (DSVMs) to predict
 - Carbon sequestration (WP14)
 - Plant species diversity (WP15)

in response to combined impacts of Climate, CO2, N deposition and ozone exposure in ECLAIRE scenarios.

- Map novel thresholds for N deposition and O₃ exposure and exceedances at European scale (WP16).
- Assess impacts of model resolution on threshold N exceedances at landscape scale (WP17).

WP 14 Carbon sequestration: Model development

DGVMs: CLM, LPJ Guess, Jules, O-CN

DSVMs: role in ICP-M and M/critical loads community

- VSD⁺: soil chemistry model at European scale
 Linked to:
- FORSPACE: detailed growth model at site scale
- Eugrow: empirical tree growth model at European scale
- All worked on inclusion impact O₃ exposure and/or N deposition on GPP/NPP and other C response parameters

Re-calibration of JULES for response of vegetation productivity to ozone deposition:

•O3 modelled using flux-gradient approach of Sitch *et al.*, (2007)

•Modified stomatal closure using Medlyn *et al.*, (2011), parameterised for European PFTs with leaf-level data

•Using observed dose-response relationships (CLRTAP Mapping Manual (2004), Karlsson *et al.*, (2007))

•5 PFTs in JULES (broadleaf tree, needleleaf tree, C3 grass, C4 grass, shrub)

•High and low ozone sensitive PFTs

Sitch *et al.*, (2007). Nature, 791-795 Medlyn *et al.*, (2011). GCB, 2134 – 2144 Karlsson *et al.*, (2007). Environmental Pollution, 608 – 616 CLRTAP Mapping Manual (2004)

Impact of ozone on vegetation GPP, NPP and transpiration across Europe (high and low sensitivity):

TER

fects of climate change on air pollution impacts

and response strategies for European ecosystems

Model intercomparison: forcing data for 1900-2050

- Climate data (hourly or daily resolution)
 - 1960-2050 ECHAM5 A1B-r3 RCA3 simulation. Includes bias correction for daily temperature and precipitation
 - 1901- 1960: random draws out of 1961-1970 ECHAM5 data
- CO₂ concentrations
 - 1900-2005: measured (Antarctic ice and Mount Loa)
 - 2005-2050: predictions based on IPCC SRES A1B scenario
- Land-use: fixed cover 2000
- EMEP model N deposition and O₃ exposure (hourly or daily resolution):
 - 1900-2000: Lamarque dataset
 - 2000-2050L new GAINS emission scenarios <u>http://www.iiasa.ac.at/</u> web/home/research/researchPrograms/Overview2.en.html.

Temporal changes in total N deposition and POD1

Area-weighted Averaged over ca. 800,00 forest sites

Model experiments

Name	Climate	CO ₂	N deposition	O ₃
S1	1961-2050	1961-2050	1961	1961
S2	1961-2050	1961-2050	1961-2050	1961
S3	1961-2050	1961-2050	1961	1961-2050
S 4	1961-2050	1961-2050	1961-2050	1961-2050

Model intercomparison: response parameters

A selection of on indicators used for model intercomparison at pan European scale for period 1900-2050

Term	Land C fluxes	Unit
Gpp	gross primary production	g C m-2 month ⁻¹
Npp	net primary production	g C m-2 month ⁻¹
	Land Pools	
cVeg	carbon in vegetation	kg C m ⁻²
cLitter	carbon in litter pool	kg C m ⁻²
cSoil	carbon in soil organic pools	kg C m ⁻²
nVeg	nitrogen in vegetation	kg N m ⁻²
nLitter	nitrogen in litter pool	kg N m ⁻²
nSoil	nitrogen in soil organic pools	kg N m ⁻²

O-CN results: O₃ effects in the years 2041-2050

Sorry, done in haste, the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of trop O3 and POD are most certainly wrong -> patterns in the units of th

Jena

MPI-BGC

O-CN results: Projections of European Terrestrial C storage

and response strategies for European ecosystems

Jena

EU grow results: Impacts of individual drivers on tree C sequestration

WP 15 Plant species diversity : Model development:

MADOC- MultiMOVE

- MADOC further developed: predicts soil pH, NO3, DOC and carbon sequestration; applied to UK
- Linkage MADOC- MultiMOVE
- EUGrow-VSD+-Props
 - Linkage EUGrow model to VSD+: assess soil carbon sequestration and predict soil pH and N indicators.
 - Development of Props (formerly EUMOVE): predicts plant species diversity in response to climate, pH and N indicators; applied to Europe

MADOC – MultiMOVE

MADOC – results

Journal article published (Rowe et al (2013) :

- Prediction of DOC in response to S and N deposition
- Calibration using acid/alkali addition experiment
- Testing against Acid Waters Monitoring Network data

Implementation

- Fortran
- Flat-format .csv inputs

! DYNAMIC

! Call the N14C, DyDOC and VSD subroutines for each Year of the simulation InitialDynamicTerminal = 2 ! Set flag to 2 = Dynamic phase do Year = StartYear,EndYear,dt

Modelling approach Props (formerly EUMOVE)

- Multiple logistic regression of measurements of species presence at ca. 800.0000 vegetation relevés in Europe versus :
 - Temperature (climate database).
 - Water availability: precipitation (climate database) and ratio actual and potential evapotranspiration (modelled).
 - pH (based on indication value related to measurements).
 - Nitrogen availability: N deposition (EMEP model) and NO₃ concentration (indication value related to measurements)

Predicted median Bray-Curtis and Simpson plant species index in 2050 for forests by Growup-VSD⁺-Props

Effects of climate change on air pollution impacts and response strategies for European ecosystems

Mapping novel critical loads and exceedances

Ozone

- Mapping POD thresholds, based on spatial explicit assessment of tree species at 1 km x 1km.
- Mapping exceedances of POD thresholds based on current and future POD by EMEP-DO₃SE
- Nitrogen
 - Apply VSD⁺-Props in an inverse way, to assess climate dependent critical N loads and map exceedances (also applied in WP 17 zooming).

Exceedance POD₁ over time – Spruce (*picea spp.*)

critical limit = 20.8 mmol/m² (5% yield reduction) (Official limit = 8 mmol/m² (2% yield reduction)

Spruce cover-scaled grid cells; 0.50^o × 0.25^o grid

Effects of climate change on air pollution impacts and response strategies for European ecosystems

Biodiversity-oriented (nitrogen) critical loads

Nitrogen: critical acceptable concentration (or leaching)
→ CL_{nut}(N)

Acidity: E.g., critical pH → Critical Load Function

Below/above good – Above/below bad ...

Biodiversity-oriented (nitrogen) critical loads

From relevees: vegetation $\leftarrow \rightarrow$ abiotic variable(s) (e.g.[N], pH) with upper and lower bound for Occurrence/abundance etc.

- Variables uncorrelated (see below)
- Variables correlated (hear Max Posch)

WP17 Local variation in threshold exceedance

- Assessment of critical N thresholds (VSD+ Props inverse) and their exceedances for 2008 in:
 - 2 study regions (central Scotland and the Netherlands)
 - 2 landscapes (Burnsmuir and Noordelijke Friese Wouden)
- at 3 resolutions:
 - Country: 50 km x 50 km, 5 x 5 km and 1 x 1 km
 - Landscape: 5 x 5 km, 1 x 1 km and 50 x 50 m

Domains, grid resolutions and input data sources for zooming.

	Domain	Grid resolution	Source of concentration and deposition data
)ecreas increas	EU27	50 x 50 km	EMEP model
ing dom ing res	NW Europe (including central Scotland and the Netherlands)	5 x 5 km	EMEP4UK model
nain siz olution	Central Scotland and the Netherlands	1 x 1 km	EMEP4UK model
P P	Landscape (Burnsmuir and Noordelijke Friese Wouden)	50 m x 50 m	NitroScape/ INITIATOR model
			óclair

Effects of climate change on air pollution impacts and response strategies for European ecosystems

WP 8: Assessing local and regional variation

EMEP4UK Simulations at 5 x 5 km and 1 x 1 km resolutions (2008)

WP 17: Local variation threshold exceedance

Application of VSD+ Props at UK landscape (soil data) <u>Input data:</u>

Effects of climate change on air pollution impacts and response strategies for European ecosystems

WP 17: Local variation threshold exceedance

Application of VSD+ Props at UK landscape (Habitat data)

Habitat Map

WP 17: Local variation threshold exceedance

Application of VSD+ Props at NL landscape (Soil data)

NCU level (multiple of 1km × 1 km cells) National 250m × 250m

Landscape 50m × 50m

Land cover

Application of VSD+ Props at NL landscape (Land cover data)

Discussion issues

- Common C4 meeting: updates on model developments/ results and planning
- Combined C4 meetings with C2, C3 and C5
 - C2-C4 Europe: discuss model intercomparison results based on protocol
 - C2-C4 zooming: input data collection and *first results*
 - C3-C4 Model improvements and agree on model protocol for validation at site scale, sensitivity and scenario analysis
 - C4-C5 Use of C4 model results in GAINS.

Challenges ahead

- Evaluate combined impacts of Climate, CO₂, N deposition and ozone exposure by ECLAIRE models and assess differences and their plausibility in view of literature.
- Inverse application of VSD+-Props (or MADOC-Multi-MOVE) to assess a critical load (CL) from a critical plant species diversity indicator value
- Assessment of this CL at different spatial resolutions to assess impacts of spatial aggregation

Questions?

